| |
- methodsnm.fe.FE(abc.ABC)
-
- FE_1D
-
- IntegratedLegendre_Segment_FE
- Lagrange_Segment_FE(methodsnm.fe.Lagrange_FE, FE_1D)
- P1_Segment_FE(FE_1D, methodsnm.fe.Lagrange_FE)
- P2_Segment_FE
- RecPol_Segment_FE
- methodsnm.fe.Lagrange_FE(methodsnm.fe.FE)
-
- Lagrange_Segment_FE(methodsnm.fe.Lagrange_FE, FE_1D)
class FE_1D(methodsnm.fe.FE) |
|
Abstract base class for finite elements in 1D.
It implements a derivative evaluation using numerical differentiation. |
|
- Method resolution order:
- FE_1D
- methodsnm.fe.FE
- abc.ABC
- builtins.object
Methods defined here:
- __init__(self)
- Initialize self. See help(type(self)) for accurate signature.
Data and other attributes defined here:
- __abstractmethods__ = frozenset({'_evaluate_id'})
- num_diff_warned = False
Methods inherited from methodsnm.fe.FE:
- evaluate(self, ip, deriv=False)
- Evaluates the (derivative of) finite element at given integration point(s).
Parameters:
ip (numpy.array): The integration point(s) at which to evaluate the finite element.
deriv (bool): Whether to evaluate the derivative of the finite element (or identity).
Returns:
numpy.array: The values of the finite element basis fcts. at the given integration point.
shape: (ndof) (for single ip)
or (dim, ndof) (for single ip and deriv = True)
or (len(ip), ndof) (for multiple ips)
or (len(ip), dim, ndof) (for multiple ips and deriv = True)
Data descriptors inherited from methodsnm.fe.FE:
- __dict__
- dictionary for instance variables
- __weakref__
- list of weak references to the object
Data and other attributes inherited from methodsnm.fe.FE:
- dim = None
- eltype = None
- ndof = None
- order = None
|
class IntegratedLegendre_Segment_FE(FE_1D) |
|
IntegratedLegendre_Segment_FE(order)
This class represents a finite element on [0,1]
that combines the lowest order P1 element with
integrated Legendre polynomials of higher order. |
|
- Method resolution order:
- IntegratedLegendre_Segment_FE
- FE_1D
- methodsnm.fe.FE
- abc.ABC
- builtins.object
Methods defined here:
- __init__(self, order)
- Initialize self. See help(type(self)) for accurate signature.
- __str__(self)
- Return str(self).
Data and other attributes defined here:
- __abstractmethods__ = frozenset()
Data and other attributes inherited from FE_1D:
- num_diff_warned = False
Methods inherited from methodsnm.fe.FE:
- evaluate(self, ip, deriv=False)
- Evaluates the (derivative of) finite element at given integration point(s).
Parameters:
ip (numpy.array): The integration point(s) at which to evaluate the finite element.
deriv (bool): Whether to evaluate the derivative of the finite element (or identity).
Returns:
numpy.array: The values of the finite element basis fcts. at the given integration point.
shape: (ndof) (for single ip)
or (dim, ndof) (for single ip and deriv = True)
or (len(ip), ndof) (for multiple ips)
or (len(ip), dim, ndof) (for multiple ips and deriv = True)
Data descriptors inherited from methodsnm.fe.FE:
- __dict__
- dictionary for instance variables
- __weakref__
- list of weak references to the object
Data and other attributes inherited from methodsnm.fe.FE:
- dim = None
- eltype = None
- ndof = None
- order = None
|
class Lagrange_Segment_FE(methodsnm.fe.Lagrange_FE, FE_1D) |
|
Lagrange_Segment_FE(order, nodes=None)
This class represents a Lagrange finite element on [0,1]. |
|
- Method resolution order:
- Lagrange_Segment_FE
- methodsnm.fe.Lagrange_FE
- FE_1D
- methodsnm.fe.FE
- abc.ABC
- builtins.object
Methods defined here:
- __init__(self, order, nodes=None)
- Initialize self. See help(type(self)) for accurate signature.
- __str__(self)
- Return str(self).
Data and other attributes defined here:
- __abstractmethods__ = frozenset()
Data and other attributes inherited from methodsnm.fe.Lagrange_FE:
- nodes = None
Data and other attributes inherited from FE_1D:
- num_diff_warned = False
Methods inherited from methodsnm.fe.FE:
- evaluate(self, ip, deriv=False)
- Evaluates the (derivative of) finite element at given integration point(s).
Parameters:
ip (numpy.array): The integration point(s) at which to evaluate the finite element.
deriv (bool): Whether to evaluate the derivative of the finite element (or identity).
Returns:
numpy.array: The values of the finite element basis fcts. at the given integration point.
shape: (ndof) (for single ip)
or (dim, ndof) (for single ip and deriv = True)
or (len(ip), ndof) (for multiple ips)
or (len(ip), dim, ndof) (for multiple ips and deriv = True)
Data descriptors inherited from methodsnm.fe.FE:
- __dict__
- dictionary for instance variables
- __weakref__
- list of weak references to the object
Data and other attributes inherited from methodsnm.fe.FE:
- dim = None
- eltype = None
- ndof = None
- order = None
|
class P1_Segment_FE(FE_1D, methodsnm.fe.Lagrange_FE) |
|
This class represents a P1 segment finite element. |
|
- Method resolution order:
- P1_Segment_FE
- FE_1D
- methodsnm.fe.Lagrange_FE
- methodsnm.fe.FE
- abc.ABC
- builtins.object
Methods defined here:
- __init__(self)
- Initialize self. See help(type(self)) for accurate signature.
- __str__(self)
- Return str(self).
Data and other attributes defined here:
- __abstractmethods__ = frozenset()
- ndof = 2
- order = 1
Data and other attributes inherited from FE_1D:
- num_diff_warned = False
Data and other attributes inherited from methodsnm.fe.Lagrange_FE:
- nodes = None
Methods inherited from methodsnm.fe.FE:
- evaluate(self, ip, deriv=False)
- Evaluates the (derivative of) finite element at given integration point(s).
Parameters:
ip (numpy.array): The integration point(s) at which to evaluate the finite element.
deriv (bool): Whether to evaluate the derivative of the finite element (or identity).
Returns:
numpy.array: The values of the finite element basis fcts. at the given integration point.
shape: (ndof) (for single ip)
or (dim, ndof) (for single ip and deriv = True)
or (len(ip), ndof) (for multiple ips)
or (len(ip), dim, ndof) (for multiple ips and deriv = True)
Data descriptors inherited from methodsnm.fe.FE:
- __dict__
- dictionary for instance variables
- __weakref__
- list of weak references to the object
Data and other attributes inherited from methodsnm.fe.FE:
- dim = None
- eltype = None
|
class P2_Segment_FE(FE_1D) |
|
This class represents a P1 segment finite element. |
|
- Method resolution order:
- P2_Segment_FE
- FE_1D
- methodsnm.fe.FE
- abc.ABC
- builtins.object
Methods defined here:
- __init__(self)
- Initialize self. See help(type(self)) for accurate signature.
- __str__(self)
- Return str(self).
Data and other attributes defined here:
- __abstractmethods__ = frozenset()
- ndof = 3
- order = 2
Data and other attributes inherited from FE_1D:
- num_diff_warned = False
Methods inherited from methodsnm.fe.FE:
- evaluate(self, ip, deriv=False)
- Evaluates the (derivative of) finite element at given integration point(s).
Parameters:
ip (numpy.array): The integration point(s) at which to evaluate the finite element.
deriv (bool): Whether to evaluate the derivative of the finite element (or identity).
Returns:
numpy.array: The values of the finite element basis fcts. at the given integration point.
shape: (ndof) (for single ip)
or (dim, ndof) (for single ip and deriv = True)
or (len(ip), ndof) (for multiple ips)
or (len(ip), dim, ndof) (for multiple ips and deriv = True)
Data descriptors inherited from methodsnm.fe.FE:
- __dict__
- dictionary for instance variables
- __weakref__
- list of weak references to the object
Data and other attributes inherited from methodsnm.fe.FE:
- dim = None
- eltype = None
|
class RecPol_Segment_FE(FE_1D) |
|
RecPol_Segment_FE(order, recpol)
This class represents a Recursive Polynomial finite element on [0,1]. |
|
- Method resolution order:
- RecPol_Segment_FE
- FE_1D
- methodsnm.fe.FE
- abc.ABC
- builtins.object
Methods defined here:
- __init__(self, order, recpol)
- Initialize self. See help(type(self)) for accurate signature.
- __str__(self)
- Return str(self).
Data and other attributes defined here:
- __abstractmethods__ = frozenset()
Data and other attributes inherited from FE_1D:
- num_diff_warned = False
Methods inherited from methodsnm.fe.FE:
- evaluate(self, ip, deriv=False)
- Evaluates the (derivative of) finite element at given integration point(s).
Parameters:
ip (numpy.array): The integration point(s) at which to evaluate the finite element.
deriv (bool): Whether to evaluate the derivative of the finite element (or identity).
Returns:
numpy.array: The values of the finite element basis fcts. at the given integration point.
shape: (ndof) (for single ip)
or (dim, ndof) (for single ip and deriv = True)
or (len(ip), ndof) (for multiple ips)
or (len(ip), dim, ndof) (for multiple ips and deriv = True)
Data descriptors inherited from methodsnm.fe.FE:
- __dict__
- dictionary for instance variables
- __weakref__
- list of weak references to the object
Data and other attributes inherited from methodsnm.fe.FE:
- dim = None
- eltype = None
- ndof = None
- order = None
| |